Convergence Theorems for Generalized Projections and Maximal Monotone Operators in Banach Spaces
نویسندگان
چکیده
منابع مشابه
A Hybrid Proximal Point Algorithm for Resolvent operator in Banach Spaces
Equilibrium problems have many uses in optimization theory and convex analysis and which is why different methods are presented for solving equilibrium problems in different spaces, such as Hilbert spaces and Banach spaces. The purpose of this paper is to provide a method for obtaining a solution to the equilibrium problem in Banach spaces. In fact, we consider a hybrid proximal point algorithm...
متن کاملA SYSTEM OF GENERALIZED VARIATIONAL INCLUSIONS INVOLVING G-eta-MONOTONE MAPPINGS
We introduce a new concept of general $G$-$eta$-monotone operator generalizing the general $(H,eta)$-monotone operator cite{arvar2, arvar1}, general $H-$ monotone operator cite{xiahuang} in Banach spaces, and also generalizing $G$-$eta$-monotone operator cite{zhang}, $(A, eta)$-monotone operator cite{verma2}, $A$-monotone operator cite{verma0}, $(H, eta)$-monotone operator cite{fanghuang}...
متن کاملStrong Convergence Theorems of Multivalued Nonexpansive Mappings and Maximal Monotone Operators in Banach Spaces
In this paper, we prove a strong convergence theorem for fixed points of sequence for multivalued nonexpansive mappings and a zero of maximal monotone operator in Banach spaces by using the hybrid projection method. Our results modify and improve the recent results in the literatures.
متن کاملConvergence theorems of multi-step iterative algorithm with errors for generalized asymptotically quasi-nonexpansive mappings in Banach spaces
The purpose of this paper is to study and give the necessary andsufficient condition of strong convergence of the multi-step iterative algorithmwith errors for a finite family of generalized asymptotically quasi-nonexpansivemappings to converge to common fixed points in Banach spaces. Our resultsextend and improve some recent results in the literature (see, e.g. [2, 3, 5, 6, 7, 8,11, 14, 19]).
متن کاملWeak convergence theorems for symmetric generalized hybrid mappings in uniformly convex Banach spaces
In this paper, we prove some theorems related to properties of generalized symmetric hybrid mappings in Banach spaces. Using Banach limits, we prove a fixed point theorem for symmetric generalized hybrid mappings in Banach spaces. Moreover, we prove some weak convergence theorems for such mappings by using Ishikawa iteration method in a uniformly convex Banach space.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003